Deep Learning Algorithm Implementations
1.0.0
C++ implementations of fundamental deep learning algorithms
Loading...
Searching...
No Matches
/home/runner/work/deep-learning-algo-impls/deep-learning-algo-impls/include/ml/ml.hpp
#include "
ml/ml.hpp
"
using namespace
ml
;
using namespace
utils
;
// PCA for dimensionality reduction
PCA<double>
pca
;
Matrix<double>
data = \
/* your data *\/;
pca.fit(data);
Matrix<double> reduced = pca.transform(data, 2);
// K-Means clustering
KMeans<double> kmeans(3);
std::vector<int> labels = kmeans.fit_predict(data);
// SVM classification
SVM<double> svm(KernelType::RBF);
std::vector<int> targets = \/* your labels *\/;
svm.fit(data, targets);
std::vector<int> predictions = svm.predict(test_data);
ml::KMeans
Definition
kmeans.hpp:41
ml.hpp
Main header file for traditional machine learning algorithms.
ml
Namespace containing traditional machine learning algorithms.
Definition
kmeans.hpp:15
utils
Definition
autograd.hpp:16
#pragma once
#include "
kmeans.hpp
"
#include "
pca.hpp
"
#include "
svm.hpp
"
namespace
ml
{
// All algorithm classes are already defined in their respective headers
// This file serves as a convenient single include point
}
kmeans.hpp
K-Means clustering algorithm implementation.
pca.hpp
Principal Component Analysis implementation.
svm.hpp
Support Vector Machine implementation with automatic differentiation.
Generated by
1.9.8