Deep Learning Algorithm Implementations 1.0.0
C++ implementations of fundamental deep learning algorithms
Loading...
Searching...
No Matches
ml Namespace Reference

Namespace containing traditional machine learning algorithms. More...

Classes

class  KMeans
 
class  PCA
 
class  SVM
 

Typedefs

using KMeansF = KMeans< float >
 Type aliases for common use cases.
 
using KMeansD = KMeans< double >
 
using PCAF = PCA< float >
 
using PCAD = PCA< double >
 
using SVMF = SVM< float >
 
using SVMD = SVM< double >
 

Enumerations

enum class  KernelType { LINEAR , POLYNOMIAL , RBF , SIGMOID }
 Kernel function types for SVM. More...
 

Detailed Description

Namespace containing traditional machine learning algorithms.

This namespace provides implementations of classical machine learning algorithms that are commonly used for data preprocessing, dimensionality reduction, clustering, and classification tasks.

The algorithms are designed to work seamlessly with the matrix utilities provided in the utils namespace.

Typedef Documentation

◆ KMeansD

◆ KMeansF

◆ PCAD

◆ PCAF

◆ SVMD

◆ SVMF

Enumeration Type Documentation

◆ KernelType

Kernel function types for SVM.

Enumerator
LINEAR 

Linear kernel: K(x, y) = x^T * y.

POLYNOMIAL 

Polynomial kernel: K(x, y) = (gamma * x^T * y + coef0)^degree.

RBF 

Radial Basis Function kernel: K(x, y) = exp(-gamma * ||x - y||^2)

SIGMOID 

Sigmoid kernel: K(x, y) = tanh(gamma * x^T * y + coef0)

Examples
/home/runner/work/deep-learning-algo-impls/deep-learning-algo-impls/include/ml/svm.hpp.

Definition at line 21 of file svm.hpp.