Deep Learning Algorithm Implementations 1.0.0
C++ implementations of fundamental deep learning algorithms
Loading...
Searching...
No Matches
dl::activation::Sigmoid Class Reference

Sigmoid activation function. More...

#include <functions.hpp>

Inheritance diagram for dl::activation::Sigmoid:
Collaboration diagram for dl::activation::Sigmoid:

Public Member Functions

double forward (double x)
 Compute sigmoid forward pass.
 
double backward (double x)
 Compute sigmoid derivative.
 
- Public Member Functions inherited from dl::activation::ActivationFunction
virtual ~ActivationFunction ()=default
 Virtual destructor for proper cleanup.
 

Detailed Description

Sigmoid activation function.

The sigmoid function maps any real number to a value between 0 and 1, making it useful for binary classification problems.

Mathematical definition:

  • Forward: f(x) = 1 / (1 + exp(-x))
  • Derivative: f'(x) = f(x) * (1 - f(x))
Warning
Can suffer from vanishing gradient problem for large |x|

Definition at line 81 of file functions.hpp.

Member Function Documentation

◆ backward()

double dl::activation::Sigmoid::backward ( double  x)

Compute sigmoid derivative.

Parameters
xInput value
Returns
sigmoid(x) * (1 - sigmoid(x))

Definition at line 26 of file functions.cpp.

◆ forward()

double dl::activation::Sigmoid::forward ( double  x)

Compute sigmoid forward pass.

Parameters
xInput value
Returns
1 / (1 + exp(-x))

Definition at line 20 of file functions.cpp.


The documentation for this class was generated from the following files: