Deep Learning Algorithm Implementations 1.0.0
C++ implementations of fundamental deep learning algorithms
|
#include <data_loader.hpp>
Static Public Member Functions | |
static MatrixD | normalize (const MatrixD &data, double min_val=0.0, double max_val=1.0) |
Normalize data to specified range. | |
static MatrixD | standardize (const MatrixD &data) |
Standardize data to zero mean and unit variance. | |
static MatrixD | one_hot_encode (const std::vector< int > &labels, size_t num_classes) |
Convert categorical labels to one-hot encoding. | |
static std::tuple< Dataset< double >, Dataset< double >, Dataset< double > > | train_val_test_split (const Dataset< double > &data, double train_ratio=0.7, double val_ratio=0.15) |
Split dataset into training, validation, and test sets. | |
Definition at line 280 of file data_loader.hpp.
|
static |
Normalize data to specified range.
data | Input data matrix |
min_val | Minimum value of output range |
max_val | Maximum value of output range |
Definition at line 178 of file data_loader.cpp.
|
static |
Convert categorical labels to one-hot encoding.
labels | Vector of integer class labels |
num_classes | Total number of classes |
Definition at line 200 of file data_loader.cpp.
Standardize data to zero mean and unit variance.
data | Input data matrix |
Definition at line 189 of file data_loader.cpp.
|
static |
Split dataset into training, validation, and test sets.
data | Input dataset to split |
train_ratio | Fraction of data for training (default: 0.7) |
val_ratio | Fraction of data for validation (default: 0.15) |
Definition at line 216 of file data_loader.cpp.