Deep Learning Algorithm Implementations 1.0.0
C++ implementations of fundamental deep learning algorithms
Loading...
Searching...
No Matches
losses.hpp File Reference

PyTorch-like loss functions with automatic differentiation. More...

#include <memory>
#include <vector>
#include "utils/autograd.hpp"
#include "utils/matrix.hpp"
Include dependency graph for losses.hpp:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Classes

class  dl::loss::AutogradLoss< T >
 Base class for autograd-compatible loss functions. More...
 
class  dl::loss::MSELoss< T >
 Mean Squared Error Loss with autograd support. More...
 
class  dl::loss::CrossEntropyLoss< T >
 Cross Entropy Loss with autograd support. More...
 
class  dl::loss::BCELoss< T >
 Binary Cross Entropy Loss with autograd support. More...
 
class  dl::loss::BCEWithLogitsLoss< T >
 Binary Cross Entropy with Logits Loss. More...
 
class  dl::loss::HingeLoss< T >
 Hinge Loss with autograd support. More...
 
class  dl::loss::HuberLoss< T >
 Huber Loss with autograd support. More...
 

Namespaces

namespace  dl
 
namespace  dl::loss
 

Typedefs

using dl::loss::MSELossD = MSELoss< double >
 
using dl::loss::MSELossF = MSELoss< float >
 
using dl::loss::CrossEntropyLossD = CrossEntropyLoss< double >
 
using dl::loss::CrossEntropyLossF = CrossEntropyLoss< float >
 
using dl::loss::BCELossD = BCELoss< double >
 
using dl::loss::BCELossF = BCELoss< float >
 
using dl::loss::BCEWithLogitsLossD = BCEWithLogitsLoss< double >
 
using dl::loss::BCEWithLogitsLossF = BCEWithLogitsLoss< float >
 
using dl::loss::HingeLossD = HingeLoss< double >
 
using dl::loss::HingeLossF = HingeLoss< float >
 
using dl::loss::HuberLossD = HuberLoss< double >
 
using dl::loss::HuberLossF = HuberLoss< float >
 

Detailed Description

PyTorch-like loss functions with automatic differentiation.

Author
Kalenitid
Version
1.0.0

Definition in file losses.hpp.