Deep Learning Algorithm Implementations 1.0.0
C++ implementations of fundamental deep learning algorithms
|
PyTorch-like loss functions with automatic differentiation. More...
Go to the source code of this file.
Classes | |
class | dl::loss::AutogradLoss< T > |
Base class for autograd-compatible loss functions. More... | |
class | dl::loss::MSELoss< T > |
Mean Squared Error Loss with autograd support. More... | |
class | dl::loss::CrossEntropyLoss< T > |
Cross Entropy Loss with autograd support. More... | |
class | dl::loss::BCELoss< T > |
Binary Cross Entropy Loss with autograd support. More... | |
class | dl::loss::BCEWithLogitsLoss< T > |
Binary Cross Entropy with Logits Loss. More... | |
class | dl::loss::HingeLoss< T > |
Hinge Loss with autograd support. More... | |
class | dl::loss::HuberLoss< T > |
Huber Loss with autograd support. More... | |
Namespaces | |
namespace | dl |
namespace | dl::loss |
Typedefs | |
using | dl::loss::MSELossD = MSELoss< double > |
using | dl::loss::MSELossF = MSELoss< float > |
using | dl::loss::CrossEntropyLossD = CrossEntropyLoss< double > |
using | dl::loss::CrossEntropyLossF = CrossEntropyLoss< float > |
using | dl::loss::BCELossD = BCELoss< double > |
using | dl::loss::BCELossF = BCELoss< float > |
using | dl::loss::BCEWithLogitsLossD = BCEWithLogitsLoss< double > |
using | dl::loss::BCEWithLogitsLossF = BCEWithLogitsLoss< float > |
using | dl::loss::HingeLossD = HingeLoss< double > |
using | dl::loss::HingeLossF = HingeLoss< float > |
using | dl::loss::HuberLossD = HuberLoss< double > |
using | dl::loss::HuberLossF = HuberLoss< float > |
PyTorch-like loss functions with automatic differentiation.
Definition in file losses.hpp.