Deep Learning Algorithm Implementations 1.0.0
C++ implementations of fundamental deep learning algorithms
|
Base class for autograd-compatible optimizers. More...
#include <optimizers.hpp>
Public Member Functions | |
AutogradOptimizer (std::vector< Variable< T > * > parameters) | |
Constructor. | |
virtual | ~AutogradOptimizer ()=default |
virtual void | step ()=0 |
Perform one optimization step. | |
virtual void | zero_grad () |
Zero gradients of all parameters. | |
virtual T | get_lr () const =0 |
Get learning rate. | |
virtual void | set_lr (T lr)=0 |
Set learning rate. | |
Protected Attributes | |
std::vector< Variable< T > * > | parameters_ |
Base class for autograd-compatible optimizers.
Definition at line 28 of file optimizers.hpp.
|
inlineexplicit |
Constructor.
parameters | Vector of parameter variables to optimize |
Definition at line 34 of file optimizers.hpp.
|
virtualdefault |
|
pure virtual |
Get learning rate.
Implemented in dl::optimization::SGD< T >, dl::optimization::Adam< T >, dl::optimization::AdamW< T >, and dl::optimization::RMSprop< T >.
|
pure virtual |
Set learning rate.
Implemented in dl::optimization::SGD< T >, dl::optimization::Adam< T >, dl::optimization::AdamW< T >, and dl::optimization::RMSprop< T >.
|
pure virtual |
Perform one optimization step.
Implemented in dl::optimization::SGD< T >, dl::optimization::Adam< T >, dl::optimization::AdamW< T >, and dl::optimization::RMSprop< T >.
|
inlinevirtual |
Zero gradients of all parameters.
Definition at line 47 of file optimizers.hpp.
|
protected |
Definition at line 64 of file optimizers.hpp.