Deep Learning Algorithm Implementations 1.0.0
C++ implementations of fundamental deep learning algorithms
Loading...
Searching...
No Matches
dl::optimization::StepLR< T > Class Template Reference

Step learning rate scheduler Decays learning rate by gamma every step_size epochs. More...

#include <optimizers.hpp>

Inheritance diagram for dl::optimization::StepLR< T >:
Collaboration diagram for dl::optimization::StepLR< T >:

Public Member Functions

 StepLR (AutogradOptimizer< T > *optimizer, size_t step_size, T gamma=0.1)
 
void step () override
 Update learning rate.
 
- Public Member Functions inherited from dl::optimization::LRScheduler< T >
 LRScheduler (AutogradOptimizer< T > *optimizer)
 
virtual ~LRScheduler ()=default
 
get_lr () const
 Get current learning rate.
 

Additional Inherited Members

- Protected Attributes inherited from dl::optimization::LRScheduler< T >
AutogradOptimizer< T > * optimizer_
 

Detailed Description

template<typename T>
class dl::optimization::StepLR< T >

Step learning rate scheduler Decays learning rate by gamma every step_size epochs.

Definition at line 319 of file optimizers.hpp.

Constructor & Destructor Documentation

◆ StepLR()

template<typename T >
dl::optimization::StepLR< T >::StepLR ( AutogradOptimizer< T > *  optimizer,
size_t  step_size,
gamma = 0.1 
)
inline

Definition at line 321 of file optimizers.hpp.

Member Function Documentation

◆ step()

template<typename T >
void dl::optimization::StepLR< T >::step ( )
overridevirtual

Update learning rate.

Implements dl::optimization::LRScheduler< T >.

Definition at line 176 of file optimizers.cpp.


The documentation for this class was generated from the following files: