Deep Learning Algorithm Implementations 1.0.0
C++ implementations of fundamental deep learning algorithms
Loading...
Searching...
No Matches
layers.hpp File Reference

PyTorch-like neural network layers with automatic differentiation. More...

#include <memory>
#include <vector>
#include <functional>
#include "utils/autograd.hpp"
#include "utils/matrix.hpp"
Include dependency graph for layers.hpp:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Classes

class  dl::layers::Module< T >
 Base class for all neural network modules (PyTorch-like nn.Module) More...
 
class  dl::layers::Linear< T >
 Linear (fully connected) layer: y = xW^T + b. More...
 
class  dl::layers::ReLU< T >
 ReLU activation function. More...
 
class  dl::layers::Sigmoid< T >
 Sigmoid activation function. More...
 
class  dl::layers::Tanh< T >
 Tanh activation function. More...
 
class  dl::layers::Dropout< T >
 Dropout layer for regularization. More...
 
class  dl::layers::Sequential< T >
 Sequential container for chaining modules. More...
 

Namespaces

namespace  dl
 
namespace  dl::layers
 

Typedefs

using dl::layers::LinearD = Linear< double >
 
using dl::layers::LinearF = Linear< float >
 
using dl::layers::ReLUD = ReLU< double >
 
using dl::layers::ReLUF = ReLU< float >
 
using dl::layers::SigmoidD = Sigmoid< double >
 
using dl::layers::SigmoidF = Sigmoid< float >
 
using dl::layers::TanhD = Tanh< double >
 
using dl::layers::TanhF = Tanh< float >
 
using dl::layers::DropoutD = Dropout< double >
 
using dl::layers::DropoutF = Dropout< float >
 
using dl::layers::SequentialD = Sequential< double >
 
using dl::layers::SequentialF = Sequential< float >
 

Detailed Description

PyTorch-like neural network layers with automatic differentiation.

Author
Kalenitid
Version
1.0.0

Definition in file layers.hpp.